直積集合についての見直し

僕は今まで、直積集合についてしっかりと理解をしているつもりでいた。
でも、位相空間論を勉強しているうちに、直積集合の理解があやふやでいたことがわかった。
最近、改めて見直したのでこの記事に自分の理解を書き記すことにする。

順序対

{\displaystyle (x_1,x_2)}
のような形をしている要素を順序対と言う。
2次元座標を考えるとわかりやすい。座標の点は、
{\displaystyle (x,y)}
の様に表されるが、これは順序対である。
{\displaystyle x,y}が違う値であれば、
{\displaystyle (x,y)\neq(y,x)}
である。これも、座標を考えるとすぐにわかる。
つまり、
{\displaystyle (x_1,x_2)=(y_1,y_2) \Leftrightarrow x_1=y_1 \land x_2=y_2}

この順序対の説明は厳密でないが、今回の話題においては基本が理解できていれば良いので、この程度に止めておく

集合族

{\displaystyle \Lambda}を集合として、任意の{\displaystyle \lambda \in \Lambda}に対応する集合{\displaystyle X_{\lambda}}があるとき、その対応を集合族と呼ぶ。これは、次のように書かれる。
{\displaystyle (X_{\lambda})_{\lambda \in \Lambda}}

対象の集合が無限個ある時にでも、これを用いてうまく表すことが出来る。
例えば、無限個の集合の和集合は集合族を用いて次のように表される。
{\displaystyle \bigcup_{\lambda \in \Lambda} X_{\lambda}}

直積

直積集合とは、複数の集合の要素で順序対を作る演算である。次のように書かれる。
{\displaystyle A \times B=\{(a,b) \mid a \in A, b \in B\}}
要素が順序対であるので、一般的には、
{\displaystyle A \times B \neq B \times A}
となる。
また、直積集合を次のような記号を使って表す。
{\displaystyle \prod_{i=1}^n X_i = X_1 \times X_2 \times \cdots \times X_n}
我々が普段使っている2次元の直交座標は、2つの実数の順序対の集合であるから次のように表される。
{\displaystyle \mathbb{R} \times \mathbb{R}}
{\displaystyle \mathbb{R}}は、実数全体の集合である。

また、直積集合は写像の集合として定義される。(僕の理解があやふやだったのはここから)
{\displaystyle Map(A,B)}{\displaystyle A,B}は集合
を、AからBへの写像の全体とすると、直積集合は次のように定義される。
{\displaystyle \prod_{\lambda \in \Lambda} X_{\lambda} = \left\{ x \in Map \left(\Lambda,\bigcup_{\lambda \in \Lambda} X_{\lambda} \right) \middle| \forall\lambda \in \Lambda, x_{\lambda} \in X_{\lambda} \right\} }
ここでの、{\displaystyle x_{\lambda} }は、{\displaystyle x(\lambda) }の事である。{\displaystyle x }写像だから、{\displaystyle x(\lambda) }は、写像{\displaystyle x }による{\displaystyle \lambda }の対応先である。
この集合は、{\displaystyle \Lambda }から{\displaystyle \bigcup_{\lambda \in \Lambda} X_{\lambda} }への写像全体なので、本当は{\displaystyle \lambda_{i} \in \Lambda }が、{\displaystyle X_{\lambda_{i}} }の元へ対応して欲しい(というか対応しないと、直積として成り立たない)ところを、他の{\displaystyle X_{\lambda_{j}} }の元へ対応してしまう可能性がある。
だから、{\displaystyle \forall\lambda \in \Lambda, x_{\lambda} \in X_{\lambda} } という条件をつけている。

対象とする集合の中に空集合があると、その集合に対して元を対応させることができなくなるので、直積は空集合になる。つまり、
{\displaystyle \exists \lambda \in \Lambda \; s.t.\; X_{\lambda} = \Phi \Rightarrow \prod_{\lambda \in \Lambda} X_{\lambda} = \Phi}
この裏が真であるとする公理を選択公理と呼ぶのだが、それはまた別の話。

射影

射影という概念があって、これは次のような写像である。
{\displaystyle p_{\lambda_i (\in \Lambda)}: \prod_{\lambda \in \Lambda} X \rightarrow X_{\lambda_i} }

例えば2次元座標における射影は次のようになる。
{\displaystyle p_{1}: \mathbb{R}\times\mathbb{R} \rightarrow \mathbb{R},\; p_{1}\left((x_1,x_2)\right) = x_1 }
まあ、要はある順序対のi番目の要素を見に行く操作と考えるとわかりやすい。

写像だから逆像が定義できるわけで、これは例えば次のようになる。
{\displaystyle p_{\lambda_i(\in \Lambda)}^{-1}\left(A_{\lambda_i} \left(\subset X_{\lambda_i}\right)\right) = X_{\lambda_1} \times \cdots \times A_{\lambda_i} \times \cdots }

一般に、射影は全射であるが単射でない。ある{\displaystyle x_{i} \in X_{i} }を含んだ順序対は複数作れるからね。
もし、任意の{\displaystyle \lambda_{i} \in \Lambda(\lambda_{i} \neq k) }について、{\displaystyle |X_{\lambda_{i}}| = 1}なら、{\displaystyle p_{k} }全単射になるね。

まとめ

僕は、直積集合の要素を写像として見ること、射影を曖昧なままにしていたので、この概念を使う直積空間で躓いたんだと思う。
今回調べて、僕の集合論に対する知識はより深くなったように思う。

この記事で、間違い等あったらコメントでどんどん教えて下さい。

参考にさせていただいたサイト

理系インデックス(集合論インデックス)