日本の声優の名前に含まれてる漢字ランキング

ことの発端

研究室のホワイトボードに誰かがとある女性声優の名前を書きました。自然と他の声優の名前も書き足されていきました。
そして、最近後輩と一緒になって一気に名前を書き連ねました。
f:id:yakumo890:20160111113618j:plain
列挙してみて「里」や「綾」と言う漢字が頻出していることに気付きました。
そこで、声優の名前に頻繁に使われる漢字はなんだろうと言う疑問を抱いたので調べた次第です。

調査

声優の名前は声優データベースから取得しました。
「性 名」のフォーマットに沿っていない名前は除外して、漢字のみをカウントしました。

ベスト5は以下の様になりました。

女性声優

漢字 頻度
596
309
105
98
92

男性声優

漢字 頻度
148
82
81
68
57

ちなみに苗字は以下の通りです。

女性声優

漢字 頻度
286
146
120
108
99

男性声優

漢字 頻度
255
112
103
103
85

考察っぽいなにか

女性声優では「子」がダントツに多いですね。まぁ至極当然と言った感じですね。
2位が「美」で3位が「奈」。「奈」が多いというのは少し意外でした。

面白かったのが、女性声優はトップの頻度がやたら高いのに対して、男性声優の漢字は、トップの「一」でも148となっていてそんなに頻度が高くないのです。女性の名前ではやたら好まれる漢字というのがある一方で、男性の名前に使われるものにはそういった漢字が無いということでしょうか。

苗字に関しては、女性男性ともに頻度の違いはあるもののベスト5に含まれてる漢字は全く一緒でした。
苗字は男女関係なく、純粋に日本の苗字に使われやすい漢字が出たと言うところでしょうか。

声優も結局は普通の人間なので、一般的な日本人の姓名のくせのような物が出ていますね。

「藤田 美奈子」という名前が、女性声優としての平均的な名前になりそうです。女性声優好きな人は参考にして下さい。

まとめ

声優の名前に使われやすい漢字を調べました。
女性では「子」、男性では「一」がトップという結果になりました。
基本的に、日本人の名前の特徴がでています。日本人の名前全体と声優名前全体を比べて、声優の名前に特徴や傾向があるのか見たいですね。

おわりに

僕の最近の推しは、「早見沙織」と「種田梨沙」です。
田村ゆかり」は昔からファンです。

全ては食と睡眠から

この記事は、Aizu Advent Calendar 2015の14日目の記事です。
前の記事は、@a_r_g_vさんで、
次の記事は、@upamuneさんです。

はじめに

食事を取ることと睡眠をすることは、人間が生命を維持するうえで必要不可欠な行為です。
しっかりと食べて寝て健康でいたいものですね。
本記事は、その2つに関するポエムです。

食に関して

研究室のメンバーなどと外食することになっても、食べたいものが思い浮かばないとか良いお店が思い浮かばないとかの要因で、なかなか行き先が決まらないことが良くあります(少なくとも僕の周りでは)。

ところで、僕の研究室はSlackのチームを持っています。しかし、過疎が激しくほとんど使われていない状況でした。
後輩の一人が、某声優をモデルにしたbotを投入し、ちょっとした業務連絡をさせたりすることでSlackを活用していますが、やはり過疎であることには変わりなく、botしか投稿していない日もしばしばあります。
僕も、その後輩に触発されbotを制作しSlackを活用することにしました。食事の行き先を決めてくれるbotです。

botの内容

「ご飯」に類する単語が含まれたリプライを飛ばすと、食べログから3店ほど店を探してきてURLを返してくれます。
選んでくるお店は基本ランダムですが、最寄り駅と定休日でふるいにかけています。

例えば、次のようにリプライを飛ばしたとします。
f:id:yakumo890:20151221105541p:plain

するとbotは、次のような検索結果を返してくれます。
f:id:yakumo890:20151221105722p:plain
f:id:yakumo890:20151221105732p:plain

botのモデルが高垣楓なのは自分の趣味です。気にしないでください。

現状の実装

クエリが飛ばせず、細かい条件の指定が出来ません。
リプライが飛ばされたときの曜日が、定休日の文章に含まれていたら候補には入れません。
最寄り駅が、会津若松駅七日町駅以外の店は候補に入れません。これは、大学から自転車で行ける範囲で絞るためです。
最大3件の候補を返してくれます。

今後考えていること

リプライが来た時刻に入れる店を候補にする。これは、最低限実装したい機能ですね。
夕食時に利用することを主に考えているので、甘味処みたいな明らかに夕食にそぐわないような店をふるいにかけるようにしようとおもいます。
行き先に迷った時に活用するものなので、正直クエリは受け付けなくてもいいかなとは思っているのですが、食事に行くのか飲みに行くのかというオプションはあったほうが良いかもしれませんね。


このbotにより少しでも、食事処で悩む不毛な時間が少なくなって、ラボのSlackが活性化してくれたらいいなと思っています。

睡眠に関して

大学から家に帰るのが億劫なときって良くありますよね。僕が住んでいる地域は冬になると積雪が激しく、これからの時期は外を移動するのが本当にしんどいです。さらに、これからの時期は何かと忙しく研究室に居る頻度も増えることでしょう。そうなると、大学で寝たいなと思うことが良くあると思います。
研究室で寝る場合、椅子を並べてその上に寝る等の手法が考えられますが、毛布が無いととても寒く、毛布を持ってくるしか無いのです。僕の研究室には、ベッドやソファーがあったのですが事情により最近撤去されてしまい寝床に貧窮しています。

そこで、研究室に寝袋を設置しました。
f:id:yakumo890:20151221113042j:plain

大変快適です。冬用の物なので、とてもあたたかく寝られます。

また、寝袋を持って夜に星を見に行くことも出来ます。
f:id:yakumo890:20151221113340j:plain

QoLが向上するので皆さんも寝袋どうですか?
ちなみに自分の寝袋はこれです
Amazon.co.jp | 寝袋 シュラフ 封筒型 レッド 丸洗いできる寝袋 【最低使用温度-10度】 スリーピングバッグ キャンプ アウトドア 冬用 軽量 | スポーツ&アウトドア 通販

おしまい

位相空間まとめ

あけましておめでとうございます。

位相空間論の、位相空間についてひと通り読んだので、勉強した項目をさくっと箇条書き

全体的に理解は浅い。特に、直積空間周辺はもう一度読みなおした方がいいレベル。
Tychonoffの定理が選択公理と同値である、という噂を聞いたのでその辺も調べてみたい。

位相空間だけ集中的に読んだので、次からは距離空間を集中的に勉強する。

それでは、本年もよろしくお願いします。

Zornの補題と整列定理

Zorn補題とZermeloの整列定理(整列定理)は以前から、選択公理と同値な命題であるということは知っていたんだけど、逆に言うと、それくらいしか知らなかった。
やっとのこと勉強したので、備忘録を書く。

選択公理

{\displaystyle \forall \lambda \in \Lambda,\; X_{\lambda} \neq \Phi \Rightarrow \prod_{\lambda \in \Lambda} X_{\lambda} \neq \Phi }
という命題を選択公理と呼ぶ。

これは、今の数学の公理系で証明も反証もできない命題であることが証明されているので、公理とされている。
基本的に、選択公理は認めるとするんだけど、認めないとする状況ってあるのかな?

選択公理と同値な命題

選択公理と同値な命題はいくつか有る。
その中でもよく使われるものに、Zorn補題と整列定理がある。

最小元

{\displaystyle X}を順序集合、{\displaystyle \leq}{\displaystyle X}上の順序関係とする。
{\displaystyle a \in X}に対して、任意の{\displaystyle x \in X}{\displaystyle a \leq x}となるとき、{\displaystyle a}{\displaystyle X}の最小元と呼ぶ。

上界

{\displaystyle X}を順序集合、{\displaystyle \leq}{\displaystyle X}上の順序関係とする。
{\displaystyle A \subset X}について、{\displaystyle a \in X}に対して、任意の{\displaystyle x \in A}{\displaystyle x \leq a}となるとき、{\displaystyle a}{\displaystyle A}の上界と呼ぶ。

上限

{\displaystyle X}を順序集合、{\displaystyle \leq}{\displaystyle X}上の順序関係とする。
{\displaystyle A \subset X}について、Aの上界全体の集合の最小元をAの上限と呼ぶ。

極大元

{\displaystyle X}を順序集合、{\displaystyle \leq}{\displaystyle X}上の順序関係とする。
{\displaystyle a \in X}に対して、{\displaystyle a \neq x \land a \leq x}となる{\displaystyle x \in X}が存在しない時、{\displaystyle a}を極大元と呼ぶ。

整列集合

{\displaystyle X}を順序集合、{\displaystyle \leq}{\displaystyle X}上の順序関係とする。
{\displaystyle X}の空でない任意の部分集合が最小元を持つ時、{\displaystyle X}を整列集合と呼ぶ。

帰納的順序集合

順序集合{\displaystyle X}の空でない全順序部分集合が上限を持つ時、帰納的順序集合と言う。

Zorn補題

帰納的順序集合は、少なくとも1つの極大元をもつ。

整列定理

空でない任意の集合に、適当な順序関係を定義して、{\displaystyle X}が整列集合になるようにできる。

直積集合についての見直し

僕は今まで、直積集合についてしっかりと理解をしているつもりでいた。
でも、位相空間論を勉強しているうちに、直積集合の理解があやふやでいたことがわかった。
最近、改めて見直したのでこの記事に自分の理解を書き記すことにする。

順序対

{\displaystyle (x_1,x_2)}
のような形をしている要素を順序対と言う。
2次元座標を考えるとわかりやすい。座標の点は、
{\displaystyle (x,y)}
の様に表されるが、これは順序対である。
{\displaystyle x,y}が違う値であれば、
{\displaystyle (x,y)\neq(y,x)}
である。これも、座標を考えるとすぐにわかる。
つまり、
{\displaystyle (x_1,x_2)=(y_1,y_2) \Leftrightarrow x_1=y_1 \land x_2=y_2}

この順序対の説明は厳密でないが、今回の話題においては基本が理解できていれば良いので、この程度に止めておく

集合族

{\displaystyle \Lambda}を集合として、任意の{\displaystyle \lambda \in \Lambda}に対応する集合{\displaystyle X_{\lambda}}があるとき、その対応を集合族と呼ぶ。これは、次のように書かれる。
{\displaystyle (X_{\lambda})_{\lambda \in \Lambda}}

対象の集合が無限個ある時にでも、これを用いてうまく表すことが出来る。
例えば、無限個の集合の和集合は集合族を用いて次のように表される。
{\displaystyle \bigcup_{\lambda \in \Lambda} X_{\lambda}}

直積

直積集合とは、複数の集合の要素で順序対を作る演算である。次のように書かれる。
{\displaystyle A \times B=\{(a,b) \mid a \in A, b \in B\}}
要素が順序対であるので、一般的には、
{\displaystyle A \times B \neq B \times A}
となる。
また、直積集合を次のような記号を使って表す。
{\displaystyle \prod_{i=1}^n X_i = X_1 \times X_2 \times \cdots \times X_n}
我々が普段使っている2次元の直交座標は、2つの実数の順序対の集合であるから次のように表される。
{\displaystyle \mathbb{R} \times \mathbb{R}}
{\displaystyle \mathbb{R}}は、実数全体の集合である。

また、直積集合は写像の集合として定義される。(僕の理解があやふやだったのはここから)
{\displaystyle Map(A,B)}{\displaystyle A,B}は集合
を、AからBへの写像の全体とすると、直積集合は次のように定義される。
{\displaystyle \prod_{\lambda \in \Lambda} X_{\lambda} = \left\{ x \in Map \left(\Lambda,\bigcup_{\lambda \in \Lambda} X_{\lambda} \right) \middle| \forall\lambda \in \Lambda, x_{\lambda} \in X_{\lambda} \right\} }
ここでの、{\displaystyle x_{\lambda} }は、{\displaystyle x(\lambda) }の事である。{\displaystyle x }写像だから、{\displaystyle x(\lambda) }は、写像{\displaystyle x }による{\displaystyle \lambda }の対応先である。
この集合は、{\displaystyle \Lambda }から{\displaystyle \bigcup_{\lambda \in \Lambda} X_{\lambda} }への写像全体なので、本当は{\displaystyle \lambda_{i} \in \Lambda }が、{\displaystyle X_{\lambda_{i}} }の元へ対応して欲しい(というか対応しないと、直積として成り立たない)ところを、他の{\displaystyle X_{\lambda_{j}} }の元へ対応してしまう可能性がある。
だから、{\displaystyle \forall\lambda \in \Lambda, x_{\lambda} \in X_{\lambda} } という条件をつけている。

対象とする集合の中に空集合があると、その集合に対して元を対応させることができなくなるので、直積は空集合になる。つまり、
{\displaystyle \exists \lambda \in \Lambda \; s.t.\; X_{\lambda} = \Phi \Rightarrow \prod_{\lambda \in \Lambda} X_{\lambda} = \Phi}
この裏が真であるとする公理を選択公理と呼ぶのだが、それはまた別の話。

射影

射影という概念があって、これは次のような写像である。
{\displaystyle p_{\lambda_i (\in \Lambda)}: \prod_{\lambda \in \Lambda} X \rightarrow X_{\lambda_i} }

例えば2次元座標における射影は次のようになる。
{\displaystyle p_{1}: \mathbb{R}\times\mathbb{R} \rightarrow \mathbb{R},\; p_{1}\left((x_1,x_2)\right) = x_1 }
まあ、要はある順序対のi番目の要素を見に行く操作と考えるとわかりやすい。

写像だから逆像が定義できるわけで、これは例えば次のようになる。
{\displaystyle p_{\lambda_i(\in \Lambda)}^{-1}\left(A_{\lambda_i} \left(\subset X_{\lambda_i}\right)\right) = X_{\lambda_1} \times \cdots \times A_{\lambda_i} \times \cdots }

一般に、射影は全射であるが単射でない。ある{\displaystyle x_{i} \in X_{i} }を含んだ順序対は複数作れるからね。
もし、任意の{\displaystyle \lambda_{i} \in \Lambda(\lambda_{i} \neq k) }について、{\displaystyle |X_{\lambda_{i}}| = 1}なら、{\displaystyle p_{k} }全単射になるね。

まとめ

僕は、直積集合の要素を写像として見ること、射影を曖昧なままにしていたので、この概念を使う直積空間で躓いたんだと思う。
今回調べて、僕の集合論に対する知識はより深くなったように思う。

この記事で、間違い等あったらコメントでどんどん教えて下さい。

参考にさせていただいたサイト

理系インデックス(集合論インデックス)

Wiener過程をこれから勉強したいって話

こんにちは
この記事は、Aizu Advent Calendar 2014の20日目の記事です。

前の記事 @masaponto
多層パーセプトロンを実装してみた - Masaponto's Blog

投稿が遅れまして、申し訳ありませぬ。

この記事は、僕が確率過程を勉強するぞ と言う宣言の記事です。
記事の中に、間違い等あったらバシバシつっこんでください。

背景

確率論、統計論的な記事を書きたいとか思ってたんですけど、当初やる予定だった記事を諸事情によりやめることにしたのと、新たなネタを得るための学習期間ってかなりかかってしまうと言う問題がありました。数学的な記事書くのには、きちんと理解しないといけないので。
じゃあ、これから勉強するぜ的な感じの記事でも書こうと言う結論に至りました。
こういうところに書いといたほうが、今後のモチベ等にもなりそうだしね。

なぜWiener過程か

興味があるから。
まあ、確率過程勉強したいなと思ってまして、確率過程の中で一番メジャーっぽいWiener過程をとりあえず理解しようという魂胆です。
あと、確率論そのものの理解を深めたいってのもあります。

概要 of Wiener過程

確率過程

何か不確定な要因持つ現象を、時系列で変化していく様子を数学的に記述したものを確率過程といいます。
確率過程は、物理学や経済学での応用が有るようです。例えば、粒子の動きや、株価の変動など。ちなみに、電話がかかってくる回数は、Poisson過程という確率過程でモデル化されるらしいです。このような物も数学的に解析されるってのは興味深いですよね。

Brown運動

確率過程の話から少しずれるのですが、Brown運動という物理的現象を先に説明します。

ものすごい小さい微粒子が、水や空気などの流体の中を動くときに、ランダムにごちゃごちゃと動くのですが、この運動をBrown運動と呼びます。(ブラウン運動 - Wikipedia)
ちなみに、水中での花粉の運動と説明されつことがありますが、これは誤りで、正確には花粉の中にある微粒子が水中でランダムに動く現象ですね。

Wiener過程

Wiener過程は、Brown運動の数理的なモデルであり、確率過程の一種です。数理モデルなので、Brown運動を正確に記述しているわけではありません。ただ、Brown運動はこのWiener過程を基に研究されています。
確率過程において、様々な性質が有るのですが、Wiener過程は、Markov性、自己相似性だとか定常性などの重要な性質をいくつも持っているのです。これも、Winer過程がよく知られている所以ですかね。
このへんの話題は、これから勉強していきますぞ。

今後

僕は、確率過程の講義を受けていたのですが、初期の方に可測の話をされてウワーッとなった覚えがあります。もっとも僕の大学は、測度論の講義が無いので、測度の話を厳密にはしませんでしたが。
やはり確率空間についての理解を深めるためには測度論をやるべきでしょう。
その後に、確率空間、確率密度、確率分布やら条件付き期待値などについて勉強すれば、確率過程と対等に渡り合える知識は得られると考えています。
そうして、Gauss過程やらLévy過程と共に、Wiener過程を勉強しまする。

今は、位相論の勉強をしています。測度論の理解の助けになると思いまして。

おわりに

Wiener過程の概要および、僕がこれから勉強したい事をさっくりと書きました。
三日坊主にだけは、ならないようにはしたい。
また、せっかくブログ作ったし、勉強した事をぼちぼち綴れたらなとか思ってます。

以上、Aizu Advent Calendar 2014の20日目の記事でした。


次の記事 @ishi_kuro

はてなブログのテスト

はてブ使うの初めてなので、色々試す

数式

総和、総乗

{ \displaystyle  \sum_{i=1}^{n} i = \frac{n}{2}(n+1)}
{ \displaystyle  f(x) = \prod_{i=1}^{n} x_i }

集合

{ \displaystyle \{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} }*1

プログラム

rubyで総和

(1..10).inject(:+)

最後に

まだまだ試したいことはあるが、とりあえずこんなもんで

*1:単位円

続きを読む